双语:Mobile Telecoms: Wireless: The Next Generation
发布时间:2017年10月19日
发布人:nanyuzi  

Mobile Telecoms: Wireless: The Next Generation

移动通信:无线:下一世代


A new wave of mobile technology is on its way, and will bring drastic change

酝酿中的新一代移动技术将带来巨变


The future is already arriving, it is just a question of knowing where to look. On Changshou Road in Shanghai, eagle eyes may spot an odd rectangular object on top of an office block: it is a collection of 128 miniature antennae. Pedestrians in Manhattan can catch a glimpse of apparatus that looks like a video camera on a stand, but jerks around and has a strange, hornlike protrusion where the lens should be. It blasts a narrow beam of radio waves at buildings so they can bounce their way to the receiver. The campus of the University of Surrey in Guildford, England, is dotted with 44 antennae, which form virtual wireless cells that follow a device around.


未来已然在目,只在于我们放眼何方。上海的长寿路上,目光敏锐的人会发现一座办公楼的楼顶架着奇怪的矩形物体:由128条微型天线组成的设备。在曼哈顿,行人会瞥见摄像头般的装置立在支架上,不但会猛然转动,而且在本应是镜头的位置有奇怪的角状突出。该装置向建筑物发射窄束无线电波,经过反射的电波可以传给接收器。萨里大学(University of Surrey)在英格兰吉尔福德(Guildford)的校园内分布着44台天线,形成一套虚拟的无线基站,供手机使用。


These antennae are vanguards of a new generation of wireless technologies. Although the previous batch, collectively called “fourth generation”, or 4G, is still being rolled out in many countries, the telecoms industry has already started working on the next, 5G. On February 12th AT&T, America’s second-largest mobile operator, said it would begin testing whether prototype 5G circuitry works indoors, following similar news in September from Verizon, the number one. South Korea wants to have a 5G network up and running when it hosts the Winter Olympics in 2018; Japan wants the same for the summer games in 2020. When the industry held its annual jamboree, Mobile World Congress, in Barcelona in February, 5G topped the agenda.


这些天线是新一代无线技术的前沿成果。虽然许多国家仍在推广被统称为“第四代”(即4G)的前一代无线技术,但电信业已经迈向下一代技术即5G的研发。2月12日,美国第二大移动运营商AT&T表示将试验5G原型电路能否在室内接通。而早在去年9月,美国第一大移动运营商Verizon也做过类似的实验。韩国希望在2018年主办冬季奥运会时能建成并启用5G网络;日本希望在2020年主办夏季奥运会时实现同样的愿景。2月在无线业界于巴塞罗那召开的年度峰会世界移动通信大会(Mobile World Congress)上,5G技术成为首要议题。


Mobile telecoms have come a long way since Martin Cooper of Motorola, inventor of the DynaTAC, the first commercially available handset, demonstrated it in 1973. In the early 2000s, when 3G technology made web-browsing feasible on mobiles, operators splashed out more than $100 billion on radio-spectrum licences, only to find that the technology most had agreed to use was harder to implement than expected.


自摩托罗拉的马丁·库帕(Martin Cooper)在1973年展示其发明的首款商用手机DynaTAC以来,移动通讯已有长足的发展。21世纪初,3G技术使手机上网成为可能,运营商于是砸出超过千亿美元购入无线电频谱牌照,却发现这项大多数人已同意使用的技术推广起来难于预期。

 

The advent of 5G is likely to bring another splurge of investment, just as orders for 4G equipment are peaking. The goal is to be able to offer users no less than the “perception of infinite capacity”, says Rahim Tafazolli, director of the 5G Innovation Centre at the University of Surrey. Rare will be the device that is not wirelessly connected, from self-driving cars and drones to the sensors, industrial machines and household appliances that together constitute the “internet of things” (IoT).


正当4G设备迎来订单高峰之际,5G的出现很可能激发另一轮投资热潮。目标是至少给用户以 “功能无限的印象”,萨里大学5G创新中心主任拉希姆·塔法佐利(Rahim Tafazolli)说。将来,从无人驾驶汽车、无人机到构成“物联网”的一切传感器、工业机械及家用电器,几乎所有设备都能无线联网。


It is easy to dismiss all this as “a lot of hype”, in the words of Kester Mann of CCS Insight, a research firm. When it comes to 5G, much is still up in the air: not only which band of radio spectrum and which wireless technologies will be used, but what standards makers of network gear and handsets will have to comply with. Telecoms firms have reached consensus only on a set of rough “requirements”. The most important are connection speeds of up to 10 gigabits per second and response times (“latency”) of below 1 millisecond.


视这一切为“炒作”并嗤之以鼻很容易,研究公司CCS Insight的凯斯特·曼(Kester Mann)说道。提到5G,大都未有定论:不只是利用哪一频段的无线电频谱及哪些无线技术未定,还有网络设备及手机制造商须遵照哪些标准也未确定。电信公司已就一套宽泛的“要求”达成共识。最重要的是连接速度最高要达到10Gbps,而且响应时间(“网络延迟”)须低于一毫秒。


Yet the momentum is real. South Korea and Japan are front-runners in wired broadband, and Olympic games are an opportunity to show the world that they intend also to stay ahead in wireless, even if that may mean having to upgrade their 5G networks to comply with a global standard once it is agreed. AT&T and Verizon both invested early in 4G, and would like to lead again with 5G. The market for network equipment has peaked, as recent results from Ericsson and Nokia show, so the makers also need a new generation of products and new groups of customers.


然而,势头已然成真。韩国和日本是有线宽带建设的领跑国家,举办奥运会是一个机会,向世界展现它们也想要领跑无线领域,即便这意味着在全球标准议定出台后它们可能必须升级其5G网络以符合标准要求。AT&T及Verizon均在早期率先投资4G,如今同样希望在5G上再度领先。正如爱立信和诺基亚最近业绩所显示的那样,网络设备市场已经饱和,因此制造商也需要新一代产品及新的客户群。


On the demand side, too, pressure is mounting for better wireless infrastructure. The rapid growth in data traffic will continue for the foreseeable future, says Sundeep Rangan of NYU Wireless, a department of New York University. According to one estimate, networks need to be ready for a 1,000-fold increase in data volumes in the first half of the 2020s. And the radio spectrum used by 4G, which mostly sits below 3 gigahertz, is running out, and thus getting more expensive. An auction in America last year raked in $45 billion.


需求方面也一样,改善无线基础设施的呼声日益迫切。纽约大学无线研究中心(NYU Wireless)的森迪普·兰根(Sundeep Rangan)表示,在可预见的未来,数据流量将继续快速增长。据估计,在本世纪20年代的前五年,网络需要准备好迎接上千倍的数据量增长。而4G所用的无线电频段(大多低于3GHz)已逐渐稀缺,且愈加昂贵,去年美国一次竞拍便卖得450亿美元。


But the path to a 5G wireless paradise will not be smooth. It is not only the usual telecoms suspects who will want a say in this mother of all networks. Media companies will want priority to be given to generous bandwidth, so they can stream films with ever higher resolution. Most IoT firms will not need much bandwidth, but will want their sensors to run on one set of batteries for years – so they will want the 5G standard to put a premium on low power consumption. Online-gaming firms will worry about latency: players will complain if it is too high.


但通往5G无线天堂的道路不会一帆风顺。对这一“万网之源”,争取话事权的不单是惯常那些电信企业。媒体公司希望优先获得更高的带宽,以便其以更高分辨率在线播放影片。大部分物联网企业不需要太大的带宽,而是想自己的传感器能靠一组电池续航数年,所以它们会希望5G标准重视低功耗。网游公司会担心网络延迟的问题:假如延迟过久,玩家会抱怨。


The most important set of new actors, however, are information-technology firms. The likes of Apple, IBM and Samsung have a big interest not only in selling more smartphones and other mobile devices, but also in IoT, which is tipped to generate the next big wave of revenues for them and other companies. Google, which already operates high-speed fibre-optic networks in several American cities and may be tempted to build a wireless one, has shown an interest in 5G. In 2014 it bought Alpental Technologies, a startup which was developing a cheap, high-speed communications service using extremely high radio frequencies, known as “millimetre wave” (mmWave), the spectrum bands above 3 gigahertz where most of 5G is expected to live.


然而,最重要的新登场者是信息技术公司。苹果、IBM、三星这类企业不但关心卖出更多的智能手机及其他移动设备,对于物联网这据称将为其带来下一波收入巨浪的领域,他们也饶有兴致。谷歌已在美国多个城市运营高速光纤网络业务,而且可能有意打造无线网络,目前该公司已对5G表示兴趣。2014年,谷歌收购了创业公司Alpental Technologies,该公司当时正在研发通过极高频无线电提供廉价而高速的通讯服务,即所谓的“毫米波”(mmWave,频段高于3GHz,也是5G预期主要使用的频段)。


To satisfy all these actors will not be easy, predicts Ulf Ewaldsson, Ericsson’s chief technology officer. Questions over spectrum may be the easiest to solve, in part because the World Radiocommunication Conference, established by international treaty, will settle them. Its last gathering, in November, failed to agree on the frequencies for 5G, but it is expected to do so when it next meets in 2019. It is likely to carve out space in the mmWave bands. Tests such as the one in Manhattan mentioned above, which are conducted by researchers from NYU Wireless, have shown that such bands can be used for 5G: although they are blocked even by thin obstacles, they can be made to bounce around them.


要满足所有各方所求并非易事,爱立信首席技术官乌尔夫·艾华信(Ulf Ewaldsson)预言道。频段问题也许是最容易解决的,一方面是因为按国际条约成立的世界无线电通信大会将解决这些问题。大会上一次召开是在去年11月,虽然当时无法就5G所用频率达成一致,但预计大会下一次在2019年召开时便可达成共识,并很可能会在毫米波频段中开辟空间。诸如上文提及由NYU无线研究中心研究人员在曼哈顿所做的测试已显示,这些频段可以用于5G:虽然薄障碍物也会造成阻隔,但可以让它们通过反射绕过障碍物。


For the first time there will not be competing sets of technical rules, as was the case with 4G, when LTE, now the standard, was initially threatened by WiMax, which was bankrolled by Intel, a chipmaker. Nobody seems willing to play Intel’s role this time around. That said, 5G will be facing a strong competitor, especially indoors: smartphone users are increasingly using Wi-Fi connections for calls and texts as well as data. That means they have ever less need for a mobile connection, no matter how blazingly fast it may be.


没有多套技术准则相互竞争,这实属首次,不像4G推出时的情形,如今普遍采用的LTE标准最初还受到芯片制造商英特尔投资开发的WiMax标准威胁。这次,似乎没有谁愿意扮演英特尔的角色。尽管如此,5G将面对一个强大对手,尤其是在室内:智能手机用户除了用Wi-Fi传输数据之外,也越来越多地用其打电话及发短信。那意味着他们对接入移动网络的需求越来越少,不管数据的传输有多么极速。


Evolution or revolution?

渐进还是革命?


Technology divides the industry in another way, says Stéphane Téral of IHS, a market-research firm. One camp, he says, wants 5G “to take an evolutionary path, use everything they have and make it better.” It includes many existing makers of wireless-network gear and some operators, which want to protect their existing investments and take one step at a time. On February 11th, for instance, Qualcomm, a chip-design firm, introduced the world’s first 4G chip set that allows for data-transmission speeds of up to 1 gigabit per second. It does the trick by using a technique called “carrier aggregation”, which means it can combine up to ten wireless data streams of 100 megabits per second.


技术还以另一种方式分割电信行业,市场研究公司IHS的斯特凡·泰拉尔(Stéphane Téral)认为。他说,一个阵营希望5G“走上渐进的道路,利用现有一切,逐步改善”。这里面包括了许多现在的无线网络设备厂商及部分运营商,它们希望保护已有的投资,逐步改进。比如,2月11日,芯片设计公司高通(Qualcomm)推出全球首款数据传输速度高达1Gbps的4G芯片组。所运用的技术名为“载波聚合”,意味着每秒可以聚合多达十个100Mbps的数据流。


The other camp, explains Mr Téral, favours a revolutionary approach: to jump straight to cutting-edge technology. This could mean, for instance, leaving behind the conventional cellular structure of mobile networks, in which a single antenna communicates with all the devices within its cell. Instead, one set of small antennae would send out concentrated radio beams to scan for devices, then a second set would take over as each device comes within reach. It could also mean analysing usage data to predict what kind of connectivity a wireless subscriber will need next and adapt the network accordingly – a technique that the 5G Innovation Centre at the University of Surrey wants to develop.


泰拉尔解释说,另一阵营主张采取革命性的方式:直接跃升至尖端技术。这可能意味着,举例说,靠单一天线与基站覆盖范围内的所有设备作通信的传统蜂窝结构移动网络将被舍弃。取而代之的是,一组小型天线将发射集合无线电波束扫描设备,在搜索到设备后,第二组天线将逐一接管。这也意味着可能需要分析使用数据来预测无线用户下一步需要何种连接性能,然后对网络做相应调整——这正是萨里大学的5G创新中心希望开发的技术。


One of the most outspoken representatives of the revolutionary camp is China Mobile. For Chih-Lin I, its chief scientist, wireless networks, as currently designed, are no longer sustainable. Antennae are using ever more energy to push each extra megabit through the air. Her firm’s position, she says, is based on necessity: as the world’s biggest carrier, with 1.1m 4G base stations and 825m subscribers (more than all the European operators put together), problems with the current network architecture are exacerbated by the firm’s scale. Sceptics suspect there may be an “industrial agenda” at work, that favours Chinese equipment-makers and lowers the patent royalties these have to pay. The more different 5G is from 4G, the higher the chances that China can make its own intellectual property part of the standard.


这一革命阵营中最直言不讳的代表是中国移动。其首席科学家易芝玲认为,按目前的设计,无线网络难以持续。要传输更多数据,天线能耗会越来越大。易芝玲表示,其公司的立场是基于必要性:中国移动是全球最大的通信运营商,拥有110万4G基站及8.25亿用户(超过欧洲所有运营商的总和),公司的规模进一步加剧了现有网络结构面临的问题。持怀疑态度者猜测其中也许存在一套“产业化安排”,偏袒中国设备制造商并降低这些公司须支付的专利使用费。5G与4G的差异越大,中国就越可趁机让自己的知识产权成为全球标准的一部分。


Whatever the motivation, Ms I’s vision of how 5G networks will ultimately be designed is widely shared. They will not only be “super fast”, she says, but “green and soft”, meaning much less energy-hungry and entirely controlled by software. As with computer systems before them, much of a network’s specialised hardware, such as the processor units that sit alongside each cell tower, will become “virtualised” – that is, it will be replaced with software, making it far easier to reconfigure. Wireless networks will become a bit like computing in the online “cloud”, and in some senses will merge with it, using the same off-the-shelf hardware.


不论动机如何,大家普遍认同易芝玲对5G网络最终设计的展望。她说,这些网络不止“超快”,还是“绿色和软性”的,即耗能低得多,且完全由软件控制。跟此前的电脑系统一样,5G网络的专用硬件(例如每一基站上的处理器单元)大部分会“虚拟化”,即会由软件取代,重新配置起来容易得多。无线网络将变得有点像在线“云”计算,而且在某种意义上将与之融合,使用相同的现成硬件。


Discussions have already begun about how 5G would change the industry’s structure. One question is whether wireless access will become even more of a commodity, says Chetan Sharma, a telecoms consultant. According to his estimates, operators’ share of total industry revenues has already fallen below 50% in America, with the rest going to mobile services such as Facebook’s smartphone apps, which make money through ads.


有关5G将如何改变通信行业结构的讨论已经展开。一个问题是,“无线接入”服务会否变得更像是一种日用商品,电信咨询师切坦·沙尔玛(Chetan Sharma)认为。据其估计,在美国电信业的总收入中,运营商所占的份额已跌至50%以下,其余份额为移动服务商所占据,比如像Facebook的智能手机应用,它们通过广告盈利。


The switch to 5G could help the operators reverse that decline by allowing them to do such things as market their own video content. But it is easier to imagine their decline accelerating, turning them into low-margin “dumb pipes”. If so, a further consolidation of an already highly concentrated industry may be inevitable: some countries may be left with just one provider of wireless infrastructure, just as they often have only one provider of water.


向5G转型,运营商或许可以通过销售自有视频内容等方式逆转目前的颓势。但更可能的是其业务加速下滑,沦为低利润的“哑管道”。倘若如此,这个本来已经高度集中的行业可能难免进一步整合:部分国家也许会只剩一个无线基础网络供应商,正如它们往往只有一家供水公司那样。


If the recent history of IT after the rise of cloud computing is any guide – with the likes of Dell, HP and IBM struggling to keep up – network-equipment makers will also get squeezed. Ericsson and Nokia already make nearly half of their sales by managing networks on behalf of operators. But 5G may finally bring about what has been long talked of, says Bengt Nordstrom of Northstream, another consulting firm: the convergence of the makers of computers and telecoms equipment, as standardisation and low margins force them together. Last year Ericsson formed partnerships first with HP and then with Cisco. Full mergers could follow at some point.


纵观云计算崛起之后IT行业近来的发展(戴尔、惠普、IBM这类公司难以跟上步伐),如果有所启示,那就是网络设备制造商也将受到挤压。爱立信和诺基亚已有近半销售额是通过为运营商代管网络而取得。另一咨询公司Northstream的本特·诺思通(Bengt Nordstrom)表示,5G可能最终会令人们一直谈论的一件事成为现实:在标准化生产及低利润的压力下,计算机制造商和电信设备商将合二为一。去年,爱立信先后与惠普及思科缔结合作伙伴关系。日后可能出现全面并购整合。


Big, ugly mobile-phone masts will also become harder to spot. Antennae will be more numerous, for sure, but will shrink. Besides the rectangular array that China Mobile is testing in Shanghai, it is also experimenting with smaller, subtler “tiles” that can be combined and, say, embedded into the lettering on the side of a building. In this sense, but few others, the future of mobile telecoms will be invisible.


巨大而丑陋的移动通信天线杆也将变得踪影难寻。天线会变多,但体积肯定会缩小。除了中国移动在上海测试中的矩形天线阵列,公司还在试验采用更小型隐蔽的“瓷片”(tile)天线,可以组合并嵌入建筑物墙面的文字中。在这个意义上,遑论其他,移动通信的前景将变得难以觉察。


下载:英文、中文版本