Five Reasons to Explore Mars
赵晨辉 译  

Five Reasons to Explore Mars


By Darrell M. West

文/达雷尔·M. 韦斯特

The recent launch of the Mars rover Perseverance is the latest U.S. space mission seeking to understand our solar system.


Mars is a valuable place for exploration because it can be reached in 6½ months, is a major opportunity for scientific exploration, and has been mapped and studied for several decades. The mission represents the first step in a long-term effort to bring Martian samples back to Earth, where they can be analyzed for residues of microbial life. Beyond the study of life itself, there are a number of different benefits of Mars exploration.


Understand the origins and ubiquity3 of life


The question of the origins of life and its ubiquity around the universe is central to science, religion, and philosophy. For much of our existence, humans have assumed that even primitive life was unique to Planet Earth and not present in the rest of the solar system, let alone the universe. We have constructed elaborate religious and philosophical narratives around this assumption and built our identity along the notion that life is unique to Earth.


If, as many scientists expect, future space missions cast doubt on that assumption or outright disprove it by finding remnants of microbial life on other planets, it will be both invigorating and illusion-shattering. It will force humans to confront their own myths and consider alternative narratives about the universe and the place of Earth in the overall scheme of things.


Develop new technologies


The U.S. space program has been an extraordinary catalyst for technology innovation. Everything from Global Positioning Systems and medical diagnostic tools to wireless technology and camera phones owes at least part of their creation to the space program. Space exploration required the National Aeronautics and Space Administration to learn how to communicate across wide distances, develop precise navigational tools, store, transmit, and process large amounts of data, deal with health issues through digital imaging and telemedicine, and develop collaborative tools that link scientists around the world. The space program has pioneered the miniaturization7 of scientific equipment and helped engineers figure out how to land and maneuver a rover from millions of miles away.


Going to Mars requires similar inventiveness. Scientists have had to figure out how to search for life in ancient rocks, drill for rock samples, take high resolution videos, develop flying machines in a place with gravity that is 40 percent lower than on Earth, send detailed information back to Earth in a timely manner, and take off from another planet. In the future, we should expect large payoffs in commercial developments from Mars exploration and advances that bring new conveniences and inventions to people.



Encourage space tourism


The Mars program will help with space tourism by improving engineering expertise with space docking, launches, and reentry and providing additional experience about the impact of space travel

on the human body. Figuring out how weightlessness and low gravity situations alter human performance and how space radiation affects people represents just a couple areas where there are likely to be positive by-products for future travel.


The advent of space tourism will broaden human horizons in the same way international travel has exposed people to other lands and perspectives. It will show them that the Earth has a delicate ecosystem that deserves protecting and why it is important for people of differing countries to work together to solve global problems. Astronauts who have had this experience say it has altered their viewpoints and had a profound impact on their way of thinking.


Facilitate space mining


Many objects around the solar system are made of similar minerals and chemical compounds that exist on Earth. That means that some asteroids, moons, and planets could be rich in minerals and rare elements. Figuring out how to harvest those materials in a safe and responsible manner and bring them back to Earth represents a possible benefit of space exploration. Elements that are rare on Earth may exist elsewhere, and that could open new avenues for manufacturing, product design, and resource distribution. This mission could help resource utilization through advances gained with its Mars Oxygen Experiment (MOXIE) equipment that converts Martian carbon dioxide into oxygen. If MOXIE works as intended, it would help humans live and work on the Red Planet.


Advance science


One of the most crucial features of humanity is our curiosity about the life, the universe, and how things operate. Exploring space provides a means to satisfy our thirst for knowledge and improve our understanding of ourselves and our place in the universe.


Space travel already has exploded centuries-old myths and promises to continue to confront our long-held assumptions about who we are and where we come from. The next decade promises to be an exciting period as scientists mine new data from space telescopes, space travel, and robotic exploration. Ten or twenty years from now, we may have answers to basic questions that have eluded8 humans for centuries, such as how ubiquitous life is outside of Earth, whether it is possible for humans to survive on other planets, and how planets evolve over time.





3. ubiquity 到处存在,普遍存在。

7. miniaturization 小型化,微型化。

8. elude 把……难倒。